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SEASONAL AND ANNUAL IMPACTS OF CLIMATE CHANGE

ON WATERSHED RESPONSE USING AN 
ENSEMBLE OF GLOBAL CLIMATE MODELS

A. Y. Sheshukov,  C. B. Siebenmorgen,  K. R. Douglas‐Mankin

ABSTRACT. Climate change impacts watershed hydrology and contributes to alteration of hydrologic regimes in streams.
However, global climate models (GCMs) operate at spatial and temporal scales that are too large to capture important
watershed‐scale hydrologic shifts. A method of disaggregating monthly ensemble GCM data into temperature and
precipitation data series for daily, watershed‐specific hydrologic simulations with SWAT was developed and assessed in the
Soldier Creek watershed in northeast Kansas. A stochastic weather generator (WINDS) was employed to produce a baseline
scenario (no changes from late 20th century conditions) and two scenarios based on ensemble means of 15 GCMs representing
future conditions (A2 storyline) referred to as the 2050 and 2100 scenarios. Future hydrologic regimes exhibited non‐linear
annual and monthly responses in hydrologic budget components, such as surface runoff, baseflow, and soil moisture, to
temperature and precipitation changes. For the 2050 scenario, the combination of higher temperatures along with decreased
annual precipitation and increased spring precipitation resulted in higher surface runoff, baseflow, and streamflow in May
and June with a longer drought season later in summer. The significant decrease in streamflow, runoff, and baseflow for the
2100 scenario reflected an increase in monthly and annual temperature rather than a direct result of precipitation decline.
The 2100 scenario also produced a reduction in low‐flow duration, an increase in the number of drought occurrences, and
a decrease in flood frequency and duration. In retrospect, use of the stochastic weather generator to temporally downscale
monthly GCM results while incorporating site‐specific climate variability (such as occurs with convective storms often missed
in coarse‐resolution GCM data) produced more meaningful analysis of hydrological impacts, which is critical to predicting
and understanding the impacts of climate change. Although this method allowed simulation of future‐climate shifts based on
GCM‐simulated monthly shifts, it could not simulate potential shifts in climate patterns within a month, such as changes in
transitional probabilities that govern the intensity and distribution of storms with months. In future work, translation of
regional climate model responses into WINDS stochastic parameter adjustments will allow more accurate and efficient
simulation. The severity of the increased drought and decreased flood responses simulated in this study would not be
anticipated by review of precipitation trends alone nor by analysis of annual hydrologic responses alone. Similarly, many
critical hydrologic responses reflected interactions between climate variables (e.g., precipitation and temperature) at
sub‐annual temporal scales, which highlights the need to consider climatic interactions in future studies of climate change
impacts.

Keywords. Climate change, Global climate model, Hydrologic regime, IPCC, SWAT, Watershed modeling, Weather generator,
WINDS.

nderstanding the impacts of climate change and
variability on watershed hydrologic response is
crucial in planning watershed management and
mitigation strategies. The Intergovernmental

Panel on Climate Change (IPCC, 2000, 2007) developed four
carbon emission scenario families (A1, A2, B1, and B2),
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which represent several possible sets of changes in the driv‐
ing forces that can influence future climate. The driving
forces include population growth, economic and social de‐
velopment,  energy and technology, agriculture and land use
emissions, and policies. Global climate models (GCMs) pro‐
duced as a result of the joint activity of multidisciplinary
teams from more than 40 scientific centers around the world
(IPCC, 2000) simulate sea, land, and atmospheric interac‐
tions according to future carbon emission scenarios.

Outputs from various GCMs represent climate model pro‐
jections and are available on a monthly‐mean scale at the
IPCC data center (IPCC, 2010). A study of 21 GCMs (Brun‐
sell et al., 2010) found that seasonal trends of temperature and
precipitation for the 21st century (2010 to 2100) in Kansas are
significant for all seasons. In northeast Kansas (grid cell 3 in
Brunsell et al., 2010), temperature was predicted to increase
0.04°C year‐1 on average in all seasons, and precipitation, al‐
though unchanged annually, increased 0.075 mm year‐1 in
spring and 0.024 mm year‐1 in winter and decreased 0.06 mm
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year‐1 in summer and 0.04 mm year‐1 in fall. These projected
increases in annual temperature and variation in seasonal pre‐
cipitation patterns could fundamentally change hydrologic
processes (Karl et al., 2009; Siebenmorgen, 2010).

Large‐scale GCM projections must be downscaled to finer
temporal scales for use in continuous hydrologic models.
Currently, GCMs are assumed to do a poor job of capturing
smaller‐scale, “internally generated” (e.g., convective)
storms common in central North America (Gutowski et al.,
2010). Stochastic weather generators can be modified to gen‐
erate future daily values of such climate variables as precipi‐
tation, temperature, relative humidity, and wind speed by
adjusting historical weather patterns based on predicted fu‐
ture alterations from GCMs (Fowler et al., 2007). However,
methods must be developed to capture smaller‐scale pro‐
cesses when using future climate adjustments from GCMs.

A number of studies have simulated watershed hydrologi‐
cal responses considering future weather changes either ac‐
cording to GCM projections (Wilby et al., 2004; Zhang et al.,
2004; Jha et al., 2006; Siebenmorgen et al., 2010) or using
simple shifts in future monthly precipitation and temperature
(Varanou et al., 2002; Zhang et al., 2004; Booty et al., 2005;
Jha et al., 2006; Zhang et al., 2007; Franczyk and Chang,
2009; Githui et al., 2009). Climate researchers recognize that
the use of ensembles of GCMs is preferred to the use of indi‐
vidual GCMs (Winkler et al., 2011b). GCM outputs differ
based on the physical model assumptions, modeling algo‐
rithms, and temporal and spatial resolution of the models, as
well as how the modelers interpreted and represented the car‐
bon emission scenarios. The ensemble‐mean approach can
represent multiple GCMs as one unified climate scenario.

The methods used to analyze climate change effects have
varied according to which parameters were regionally impor‐
tant. Githui et al. (2009) and Zhang et al. (2007) used mod‐
eled streamflow, whereas Booty et al. (2005) analyzed water
quality, and Varanou et al. (2002) used a combination of wa‐
ter quality, surface flow, lateral flow, and groundwater flow
to analyze climate change effects. A sensitivity analysis ap‐
proach (Somura et al., 2009) studied all combinations of six
annual precipitation variation adjustments (from ‐20% to
+30% in 10% increments) with three annual temperature‐
increase increments (+1°C, +2°C, and +3°C). The research‐
ers concluded that river discharge was mostly affected by
precipitation variations. Although the effect of temperature
was small, it caused a significant increase in annual ET, espe‐
cially during the winter months. A comprehensive hydrolog‐
ic modeling analysis of climate change in North America
(Jha et al., 2006) used a combination of uniform shifts to con‐
duct a sensitivity analysis as well as multiple GCMs to get
monthly temperature and precipitation adjustments for a
hydrologic analysis of the upper Mississippi River basin. The
analysis found that precipitation shifts had a greater impact
on future streamflow than temperature, although the impact
of temperature increased as the magnitude of the change in‐
creased, and that solar radiation and relative humidity
changes had minimal effects on future streamflow.

A few studies were found that presented the hydrologic
impacts of multiple GCM results, and a few studies presented
methods that captured the stochastic variability of climate
while representing future climatic shifts, but no studies com‐
bined both these analytical approaches to provide detailed
hydrologic responses to future climate variability and
change. The objectives of this study were to (1) demonstrate

and assess a method to create and analyze an ensemble of
temporally disaggregated monthly GCM data that capture
smaller‐scale processes (e.g., convective storms) in a daily
data series, and (2) analyze the impacts of climate scenarios
on seasonal watershed processes and responses in a northeast
Kansas watershed.

MATERIALS AND METHODS
STUDY AREA

The selected study area, Soldier Creek watershed (hydro‐
logic unit code 1027010209), is an unregulated watershed of
769 km2 located north of the city of Topeka in northeast Kan‐
sas; it drains parts of Nemaha, Jackson, and Shawnee coun‐
ties (fig. 1). Soldier Creek watershed land use is dominated
by pasture (43%) and rangeland (23%) with 19% in row
crops. Based on watershed assessment information for Jack‐
son County, the cropland, concentrated along the floodplain,
is primarily continuous corn; more than 80% of row crop
lands has terraces, and dominant management practices are
traditional tillage and no‐till. Land uses have remained rela‐
tively unchanged since the 1960s after channelization of the
lower portion of Soldier Creek watershed was completed by
the U.S. Army Corps of Engineers (Juracek, 2002). The relief
generally consists of gently sloping topography with a me‐
dian slope of 2.7%, and the maximum difference in elevation
is 164 m. Soils in this area are generally silt loam and clay
loam with a mean permeability around 0.5 cm h‐1; 35% of the
watershed is in soil hydrologic group D (high runoff poten‐
tial; mostly located in the northern portion of the watershed),
11% is in group C (primarily west of the mainstem), and 53%
is in group B (primarily in the eastern portion) (USDA‐
NRCS, 2005, 2007). The outlet of the watershed was selected
to coincide with U.S. Geological Survey (USGS) gauge sta‐
tion 06889500 at coordinates 39° 6′ 0″ N and 95° 43′ 29″ W
(USGS, 2009). National Climatic Data Center (NCDC, 2009)
cooperative weather station 147007 at the Topeka Airport,
about 10 km southeast of the watershed outlet, was selected
as the main weather station for the watershed.

CLIMATE SCENARIO GENERATION

GCMs and Climate Change Scenarios
Among 24 available GCMs acquired from the IPCC data

center (IPCC, 2010), 15 GCMs were identified as suitable for
this study (table 1). Each model uses a unique global grid with
the grid cell sizes varying from ~100,000 to ~700,000 km2.
The A2 (high economic growth, low technology develop‐
ment, high population growth) climate change scenario was
selected for this study due to a high regionally oriented socio‐
economic development in the scenario that has a diverse im‐
pact on the environment. For a GCM to be included, it was
required to contain results for both a “historical experiment”
period from 1961 to 1990, which provides the basis for val‐
idation of the GCM‐simulated data for the second part of 20th
century, and an A2 projection representing future conditions
for the 2046‐2065 and 2080‐2099 periods. These three peri‐
ods were used to develop three climate scenarios in this
study: the baseline scenario, which simulated future climate
as unchanged from the historical experiment period, and two
climate change scenarios representing GCM results for
2046‐2065 (referred to as the 2050 scenario) and 2080‐2099
(referred to as the 2100 scenario).
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Figure 1. Soldier Creek watershed delineated into 15 subbasins in north‐
east Kansas. The watershed outlet, shown by a solid circle, is located at
USGS gauge station 06889500.

Data for the grid cell of each GCM (table 1) with the center
point closest to the Topeka Airport weather station (fig. 1)
were selected, and average monthly values of temperature
and precipitation for the three scenario periods were acquired
from the IPCC data center (IPCC, 2010). The alterations in
climate variables for the 2050 and 2100 scenarios were com‐
puted as percentage difference in monthly values from the
historical experiment runs.

Time Series Generation with a Stochastic Weather
Generator

Many watershed models simulate hydrologic processes on
a continuous daily temporal scale. A common method to
downscale monthly temperature and precipitation GCM pro‐
jections to daily time series is stochastic downscaling using
a weather generator (Winkler et al., 2011a). The weather gen‐
erator used in this study was WINDS (Weather Input for Non‐
point Data Simulation) (Wilson et al., 2006), which simulates
many years of weather realization based on statistics com‐
puted from daily time series of weather data. A two‐step pro‐
cess is used. The first step analyzes historical daily weather
records to obtain relevant statistical information. Each cli‐
mate variable is represented by cosine functions with three
harmonics (Wilson et al., 2006). Mean, standard deviation,
and skews are computed daily for all non‐precipitation data.
Since the precipitation climate variable is a discontinuous
function, a 28‐day interval is used. Transitional probabilities
of wet days given that the previous day is wet and given that
the previous day is dry are calculated using the cosine fit
function (Wilson et al., 2006). The second step uses calcu‐
lated statistics to generate time series of 11 weather variables.
Non‐precipitation  variables are represented by continuous
functions and simulated with a statistical framework of Mar‐
kov processes. Discrete precipitation events are modeled us‐
ing a first‐order, two‐state Markov chain. A transitional
probability function is used to identify a rainfall event, and
a log‐normal probability density function distribution is used
to determine precipitation depth for that rainfall event. Cross‐
correlations between non‐precipitation variables are applied
for predicting daily values. This two‐step process allows
WINDS to produce a continuous daily weather variable time
series that closely resembles historical statistics.

This process is excellent at generating weather data based
on historical trends, but modifications to WINDS are needed
to account for future climate change adjustments. At each
step of generating daily variables, the normalizing parameter
representing the annual average of the specified variable is
scaled according to the monthly GCM shifts, and a new value
is generated. The normalizing parameters were scaled for the
2050 and 2100 scenarios but not for the baseline scenario.

Table 1. List of the IPCC AR4 global climate models (IPCC, 2010), grid cell center points, and model resolutions used in the study.

Model Name Group Country
Cell

(Lat., Long.)
Resolution

(Lat. × Long.)

1 CNRM‐CM3 Centre National de Recherches Météorologiques France 40.45, 264.38 2.80 × 2.80
2 CSIRO‐Mk3.0 Australia's Commonwealth Scientific and Industrial 

Research Organization
Australia 40.09, 264.38 1.875 × 1.875

3 ECHO‐G Meteorological Institute, University of Bonn; 
Meteorological Research Institute of KMS; 

and Model and Data Group at MPI‐M

Germany;
Korea

38.94, 262.50 3.75 × 3.75

4 GFDL‐CM2 Geophysical Fluid Dynamics Laboratory U.S. 39.00, 263.75 2.00 × 2.50
5 GFDL‐CM2.1 Geophysical Fluid Dynamics Laboratory U.S. 39.22, 263.75 2.00 × 2.50
6 GISS‐ER Goddard Institute for Space Studies U.S. 37.58, 262.50 4.00 × 5.00
7 UKMO‐HadCM3 U.K. Met Office U.K. 40.00, 262.50 2.75 × 3.75
8 UKMO‐HadGEM1 U.K. Met Office U.K. 38.75, 264.38 1.25 × 1.875
9 INM‐CM3.0 Institute for Numerical Mathematics Russia 40.00, 265.00 4.00 × 5.00

10 IPSL‐CM4 Institut Pierre Simon Laplace France 39.30, 262.50 2.50 × 3.75
11 NIES‐MIROC3.2medres National Institute for Environmental Studies Japan 40.45, 264.38 2.80 × 2.80
12 ECHAM5/MPI‐OM Max Planck Institut for Meteorology Germany 38.23, 264.38 2.80 × 2.80
13 MRI‐CGCM2.3.2 Meteorological Research Institute Japan 40.45, 264.38 2.80 × 2.80
14 NCAR‐CCSM3 National Center for Atmospheric Research U.S. 39.91, 264.38 1.40 × 1.40
15 NCAR‐PCM National Center for Atmospheric Research U.S. 40.45, 264.38 2.80 × 2.80
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A pool of 105‐year daily time series was generated for
each of the three scenarios. The primary statistics (daily
mean and standard deviation) were calculated for each calen‐
dar day for each dataset. Each baseline scenario time series
had a different degree of agreement with calendar‐day statis‐
tics from the historical records. The generated dataset with
the best fit to the historical statistics had a coefficient of deter‐
mination (R2) greater than 0.95 and was selected for simula‐
tion. For future (2050 and 2100) scenarios generated by
WINDS, there are no “historical” data to use for best‐fit com‐
parison. As a substitute, reference statistics were developed
from a 1000‐year generated dataset, based on prior analysis
that found these long‐term (1000 or more years) generated
datasets had close agreement (R2 > 0.99) with statistics from
historical datasets. Thus, a 1000‐year dataset was generated
for each future (2050 and 2100) scenario, and the primary sta‐
tistics calculated from these 1000‐year datasets were used to
select the best‐fit 105‐year dataset from the pool of generated
105‐year datasets.

WATERSHED MODELING

SWAT Model Setup
The Soil and Water Assessment Tool (SWAT) version

2005 (Arnold et al., 1998; Neitsch et al., 2004, 2005) was
employed to simulate hydrological response to climate
change. SWAT is a physically based, watershed scale, contin‐
uous simulation model developed by the USDA Agricultural
Research Service (ARS) that is used extensively worldwide
(Gassman et al., 2007; Douglas‐Mankin et al., 2010; Tuppad
et al., 2011). SWAT incorporates a set of both physically and
empirically  based equations to simulate various hydrologic
and water quality processes on a daily scale. Based on topog‐
raphy, SWAT delineates the watershed into subbasins. Each
subbasin is further subdivided into subareas with homoge‐
neous properties of slope range, land use, and soil type, which
are called hydrologic response units (HRUs). Within each
HRU, modeling components include hydrology, sediment
transport, nutrient transformation, plant growth, soil percola‐
tion, and agricultural management. The hydrologic cycle on
a given day j is simulated based on the water balance equation
within the HRU (all balance variables have units of mm
H2O):

 ∑
=

−−−−+=
j
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where SW is the soil water content, PR is the amount of pre‐
cipitation,  RO is the amount of surface runoff, ET is the
amount of evapotranspiration, IN is the amount of water en‐
tering the vadose zone from the soil profile, and GW is the
amount of return flow. The subscript 0 indicates the initial
water content at the beginning of the simulations.

This study used the NRCS runoff curve number method
with daily adjustment according to soil moisture conditions
to estimate surface runoff, the Penman‐Monteith method for
estimation of evapotranspiration, and the Muskingum meth‐
od for channel routing. SWAT uses daily weather data (mini‐
mum and maximum temperature, precipitation depth, solar
radiation, wind speed, and relative humidity) applied uni‐
formly to all HRUs within a subbasin according to the nearest
weather station.

A SWAT model was built for Soldier Creek watershed
(fig.�1) with 15 subbasins ranging from 100,000 to
200,000�ha delineated using a 30 m digital elevation model
for Jackson, Nemaha, and Shawnee counties (USDA‐NRCS,
2009). The stream network was created during the delinea‐
tion process. Land use data were derived from the National
Land Cover Dataset from 2001 (Homer et al., 2004; USDA‐
NRCS, 2009), and soil data were derived from the STATSGO
data layer (USDA‐NRCS, 2005, 2007). An overlap of the
three spatial datasets of slope range, land use, and soil was
processed with SWAT, and 878 HRUs were generated. Daily
maximum and minimum temperature and precipitation data
series for three future climate scenarios were prepared with
WINDS for 105 years (5 years of model spin‐up and 100 years
of simulation).

Model Calibration
The SWAT model for Soldier Creek watershed was cali‐

brated using daily streamflow at the watershed outlet (fig. 1)
from USGS gauge station 06889500 (USGS, 2009). The his‐
torical daily precipitation and minimum and maximum tem‐
perature data series were acquired for the period of 1980 to
1999 from cooperative weather station 147007 (NCDC,
2009). Daily values for other weather variables (solar radi‐
ation, relative humidity, and wind speed) were generated by
SWAT. Eleven model parameters were adjusted during cal‐
ibration (table 2). Values of BF_ALPHA and GW_DELAY
for baseflow contribution in all subwatersheds were calcu‐
lated with the method presented by Arnold and Allen (1999).
The remaining parameters were iteratively varied over the
recommended ranges (table 2) until acceptable statistics
were reached. The SWAT model was run from 1980 to 1999
and calibrated using daily streamflow over a 16‐year period
(1983 to 1999) using R2, Nash‐Sutcliffe efficiency (NSE),
percent bias (pBias), and difference in daily, monthly, and
annual mean and median observed and simulated flows (Mo‐
riasi et al., 2007). Final calibration statistics for daily, month‐
ly, and annual streamflow are reported (table 3); monthly
results were rated good (R2, NSE) to very good (pBias) ac‐
cording to criteria proposed by Moriasi et al. (2007) and Para‐
juli et al. (2009a, 2009b).

INTRA‐ANNUAL STREAMFLOW ANALYSIS

Six hydrologic indices were selected for analysis of intra‐
annual streamflow characteristics that are representative of
stream alteration: mean annual flow, low pulse count and
duration, and high‐flow peak, duration, and frequency. Low‐

Table 2. SWAT parameters adjusted during
the streamflow calibration procedure.

Parameter
Default
Value

Adjustment
Range

Final Adjusted
Value

SMTMP 0.5 ‐5 to 5 2
TIMP 1.0 0 to 1.0 0.5
ESCO 0.95 0.01 to 1.0 0.8
EPCO 1.0 0.01 to 1.0 0.1

SURLAG 4 1 to 12 2
GW_DELAY 31 0 to 500 27
ALPHA_BF 0.048 0.0 to 1.0 0.08
GWQMIN 0 0 to 5000 0.01

GW_REVAP 0.02 0.02 to 0.20 0.1
REVAPMN 1 0 to 500 0.08
RCHRG_DP 0.05 0.0 to 1.0 0.1
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Table 3. Statistics for the streamflow calibration run.
R2 NSE pBias

Daily 0.56 0.56 5.69%
Monthly 0.74 0.73 5.78%
Yearly 0.88 0.84 5.69%

flow indices represent droughts, which impact habitat for
aquatic organisms and water table levels for phreatic riparian
plants. Low pulse threshold is defined by the annual mean
flow minus one standard deviation (4.2 m3 s‐1 in this study).
Low pulse count is the number of times the daily flow falls
below the threshold, and low pulse duration is the mean num‐
ber of days below the threshold per occurrence, as discussed
in IHA (2009). Floods are continuous periods of time when
daily flow values exceed the annual mean flow plus one stan‐
dard deviation and have a peak above 10% probability of ex‐
ceedance (or 600 m3 s‐1 in this study). These thresholds were
suggested in IHA (2009) and verified by analyzing natural
breaks in flood event peak streamflows.

RESULTS AND DISCUSSION
TEMPORAL DISAGGREGATION
GCM Historical Experiment Validation

The range of average monthly temperatures simulated for
1961 to 1990 from 15 GCMs was consistent with the NCDC
weather station observations throughout all months (fig. 2b),
with monthly means from the 15 GCM ensemble underesti‐
mating the means from the NCDC weather station by 1.5°C
on average (R2 = 0.95). Variation in simulated precipitation
among the GCMs was substantially greater (fig. 2a), with
standard deviations ranging from 13 mm in winter months to
about 40 mm in July and August. This variation could have
been influenced both by expected monthly variability in pre‐
cipitation as well as by inconsistency in the area and location
covered by the different GCM cells (table 1). Although all
GCM cells overlapped the target watershed, they also in‐
cluded areas north, south, east, and west of the watershed in
varying proportions, and thus represented slightly different
climatic conditions. Comparison of monthly means from the
15 GCM ensemble and the NCDC weather station data re‐

sulted in R2 = 0.78. The dual peaks in precipitation (June and
September) from the NCDC data were not captured by the
multi‐model  GCM dataset. Again, this could reflect that the
15 GCM cells did not represent the same spatial area. In addi‐
tion, convective storms prevalent in the Midwest are not rep‐
resented well by GCMs (Brunsell et al., 2010), which likely
contributed to the observed variability in simulated precipita‐
tion. Nonetheless, the range of monthly GCM results from
historical simulations seemed to overlap the monthly mean
NCDC data used in this study, indicating a reasonable repre‐
sentation of local monthly mean climate. In addition, the lack
of inclusion of convective storms by GCMs was addressed in
this study by the use of daily historical distributions of precip‐
itation data (by WINDS), which included convective storms.

Future Climate Trends
The average change in GCM‐simulated precipitation from

baseline to the 2050 scenario (fig. 3a) was positive (in‐
creased) for spring, fall, and winter, with the greatest increase
in May, and was negative (decreased) for summer (June
through September). The influence of any under‐ or overes‐
timation observed in the historical GCM simulations (fig. 2a)
were minimal in the analysis of future climate since this anal‐
ysis focused on relative changes between ensemble‐mean
GCM results rather than absolute values of GCM results.
Thus, the general underestimation by GCMs evident in the
baseline (historical) results (fig. 2a) in June and September
and overestimation in January through April likely had only
minimal influence on the seasonal changes from the baseline
GCM precipitation values in figure 3a. The standard devi‐
ation among GCMs exceeded 10 mm in all months, with sum‐
mer months tending to have the largest variability (>25 mm).
Similar seasonal trends in GCM‐simulated precipitation
changes were observed from the baseline to the 2100 scenario
(fig. 3c) but with increased variability among GCMs, particu‐
larly for the months of June through September. Mean tem‐
perature changes from the baseline increased from 2°C to
4°C in all months for the 2050 scenario, with the greatest in‐
crease in August (fig. 3b). Mean temperature change was
even greater for the 2100 scenario, increasing by 4°C to
6.5°C (fig. 3d).

Figure 2. Monthly statistics (mean, ±1 standard deviation, maximum, and minimum) of 15 GCMs for (a) precipitation and (b) temperature compared
to mean monthly value from historical data (1961‐1990) from the NCDC weather station at Topeka Airport, shown as solid squares. Annual averages
of 75.3 mm (precipitation) and 10.9°C (temperature) are shown as dashed lines.
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Figure 3. Statistics (mean, ±1 standard deviation, maximum, and minimum) of changes in monthly precipitation and temperature compared to the
historical experiment period for each GCM for (a, b) the 2050 scenario and (c, d) the 2100 scenario. Annual means of precipitation and temperature
changes are +2.3 mm and +3.0°C for the 2050 scenario and ‐11.3 mm and +5.1°C for the 2100 scenario.

FUTURE HYDROLOGIC IMPACTS
Annual precipitation decreased by 5.9% in 2100, but

streamflow, surface runoff, and baseflow decreased by 17.2%
to 20.7% because of the large increase in monthly and annual
temperatures (table 4). Annual impact on these hydrologic
responses in the 2050 scenario was substantially less but posi‐
tive (1% to 2% increases) with only a slight decrease in annu‐
al precipitation. The drastic change from slight increases for
2050 to large decreases for 2100 appeared to result from
interactions of hydrological processes. For example, in 2050,
the 0.5% decrease in annual precipitation coupled with the
1.2% decrease in ET could have interacted to cause the simu‐
lated increases in surface runoff (1.0%) and baseflow (2.2%).
Similarly, the ten times greater decrease relative to 2050
(5.9%) in annual precipitation coupled with only a two times
greater decrease (2.4%) in ET in 2100 could have interacted
to cause the simulated decreases in surface runoff (15.5%)
and baseflow (20.7%). However, analysis of annual hydro‐
logic results does not capture the important seasonal changes
that result from changing climate, and the small annual
changes (often less than 2%) mask the significance of hydro‐
logic response to climate change.

Streamflow increased for the 2050 scenario in May and
June, followed by a decrease in August and September
(table�4, fig. 4). The increased streamflow in June opposed
the decreased precipitation in June and appeared to reflect
delayed transmission of the increased April and May precipi‐
tation via baseflow in May and June and was related to in‐

creased infiltration (May) and soil water content (April and
May). Surface runoff increased continuously from April to
July, with an increase in precipitation in April and May and
a decrease in June and July. The increased surface runoff and
streamflow in July during the 2050 simulations despite de‐
creased precipitation and baseflow may have been partly re‐
lated to the decreased ET, infiltration, and soil moisture,
which are reflected in the monthly values. An additional in‐
fluence that is not reflected in the monthly values was several
extreme precipitation events in July during 2050 (compared
to no extreme events in the baseline scenario) that contrib‐
uted to streamflow but contributed little to infiltration and
baseflow. The 13.9% (15 mm) decrease in August precipita‐
tion during 2050 more than offset a 6.4% (6 mm) decrease in
ET to cause a 20.4% (2.5 mm) decrease in surface runoff. In
September, however, a 6.2% (6.2 mm) increase in precipita‐
tion replenished most (about 10 mm) of the soil moisture def‐
icit from August and together with a 2.4% (1.5 mm) decrease
in ET resulted in a 7.2% (1.0 mm) decrease in surface runoff
and 21.5% (0.5 mm) decrease in baseflow.

Compared to 2050, annual precipitation for 2100 de‐
creased by 5.9%, whereas mean annual streamflow de‐
creased by 17.2% (table 4). Streamflow and surface runoff for
2100 decreased relative to the baseline in all months except
April, and baseflow decreased in all months. Decreased by
20.5% baseflow in June for 2100 (fig. 4) appears dispropor‐
tionately large relative to a slight decrease of 3.2% in precipi‐
tation and probably reflects a one‐month lag of infiltration
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Table 4. Monthly and annual values of the hydrologic balance components specified in equation 1 for the baseline
scenario. Data for the 2050 and 2100 scenarios represent percentage changes from the baseline conditions.

Month Annual
MeanJan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Baseline
Precipitation (mm) 26.6 36.3 61.0 84.7 135.7 133.5 107.8 107.9 100.4 97.3 56.3 24.1 971.5
Streamflow (m3 s‐1) 2.2 3.1 3.4 3.9 7.7 7.7 5.5 4.0 4.8 5.6 4.5 2.2 4.5
Surface runoff (mm) 5.0 8.1 8.8 9.7 23.5 20.1 14.9 12.1 14.6 15.6 9.2 2.4 12.0
Baseflow (mm) 2.6 2.3 3.6 4.4 5.7 7.3 4.4 2.3 2.4 4.6 5.9 4.9 4.2
Infiltration (mm) 2.3 5.2 8.8 10.6 16.5 13.8 5.2 3.4 5.8 10.0 8.0 2.5 7.7
Soil moisture (mm) 251.5 258.5 259.9 259.4 257.5 234.4 200.6 200.7 219.8 241.7 247.0 247.1 239.8
ET (mm) 12.6 20.0 44.6 64.9 96.8 123.0 121.7 92.4 60.6 49.2 32.7 16.4 61.2
Water yield (mm) 7.5 10.2 12.2 13.8 28.6 26.9 19.2 14.3 16.9 19.9 15.0 7.4 16.0

2050 Scenario
Precipitation 1.7 1.2 ‐3.5 6.4 9.3 ‐6.2 ‐9.6 ‐13.9 6.2 ‐0.2 0.5 22.5 ‐0.5
Streamflow 14.9 ‐4.1 ‐8.7 6.0 19.3 9.7 0.6 ‐20.1 ‐13.6 3.7 ‐12.8 7.4 1.3
Surface runoff 22.2 ‐4.0 ‐21.4 18.3 17.2 3.7 0.4 ‐20.4 ‐7.2 7.1 ‐24.6 23.2 1.0
Baseflow 7.5 7.8 10.9 ‐9.5 27.2 14.9 ‐12.9 ‐27.4 ‐21.5 ‐11.5 3.9 2.8 2.2
Infiltration 27.9 4.3 ‐3.9 ‐1.7 33.6 ‐12.8 ‐28.4 ‐49.4 ‐24.7 8.8 ‐4.6 28.7 0.8
Soil moisture 0.1 0.5 ‐0.5 1.1 1.0 ‐2.3 ‐4.1 ‐6.4 ‐1.3 ‐1.5 ‐0.7 0.1 ‐1.0
ET 2.6 2.9 3.0 ‐0.4 3.6 0.6 ‐5.0 ‐6.4 ‐2.4 ‐1.8 ‐0.3 ‐1.3 ‐1.2
Water yield 16.7 ‐1.8 ‐12.0 9.8 19.2 7.2 ‐2.4 ‐21.3 ‐9.3 2.6 ‐13.6 9.1 1.3

2100 Scenario
Precipitation 7.4 ‐5.3 ‐7.7 7.4 ‐10.1 ‐3.2 ‐19.3 ‐11.8 1.1 ‐13.1 ‐14.1 50.0 ‐5.9
Streamflow ‐5.5 ‐5.9 ‐23.5 8.5 ‐17.6 ‐4.6 ‐29.7 ‐7.2 ‐19.8 ‐34.0 ‐45.1 ‐3.9 ‐17.2
Surface runoff 7.0 ‐5.3 ‐33.7 24.2 ‐20.7 1.8 ‐35.3 ‐6.3 ‐15.3 ‐37.3 ‐53.6 77.7 ‐15.5
Baseflow ‐13.0 ‐1.6 ‐2.7 ‐17.5 ‐5.4 ‐20.5 ‐21.2 ‐30.3 ‐35.0 ‐26.5 ‐33.7 ‐34.6 ‐20.7
Infiltration 17.0 ‐4.8 ‐14.2 ‐5.1 ‐11.6 ‐14.0 ‐34.0 ‐48.8 ‐21.3 ‐30.9 ‐42.8 8.8 ‐17.9
Soil moisture ‐0.6 ‐0.6 ‐1.3 0.3 ‐2.8 ‐3.3 ‐6.3 ‐6.9 ‐4.0 ‐4.7 ‐4.7 ‐1.8 ‐2.9
ET 4.0 2.3 3.5 0.4 1.6 ‐1.9 ‐7.2 ‐9.7 ‐0.5 ‐2.0 ‐0.6 ‐1.0 ‐2.4
Water yield ‐0.5 ‐4.8 ‐25.2 11.4 ‐17.7 ‐3.9 ‐31.9 ‐9.8 ‐18.2 ‐34.9 ‐45.7 1.8 ‐16.9

Figure 4. Distribution of monthly average precipitation, streamflow, surface runoff, and baseflow for baseline, 2050, and 2100 scenarios. Annual aver‐
age values are shown in the insets.
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and surface runoff decreases from May, similar in process to
the lagged baseflow increase predicted for 2050 described
above.

The changes in monthly hydrologic components were less
for 2100, not due to monthly variations in precipitation but
due to the greater influence of increasing monthly tempera‐
tures. The 2050 scenario predicted an annual increase of
3.0°C, but the 2100 scenario projected that increase to be
5.1°C. As a result, the comparison between these two scenar‐
ios was basically a test of the temperature effects.

Soil moisture, important for crop production, decreased
on an annual basis by 1.0% in 2050 and 2.9% in 2100. How‐
ever, monthly decreases in soil moisture peaked at 6.4% in
2050 and 6.9% in 2100 (table 4). ET also increased in early
spring due to increased ET demand from increased tempera‐
tures coupled with adequate soil moisture availability; how‐
ever, ET decreased in summer due to decreased soil moisture
availability  from decreased summer precipitation and in‐
creased temperature. These decreases in soil moisture during
the crop growing season may have critical impacts on crop
yields that cannot be inferred from the raw climate change
data or the annual hydrologic impact summary values.

INTRA‐ANNUAL STREAMFLOW IMPACTS

Mean annual flow remained nearly unchanged from the
baseline to 2050 but decreased by 17.2% for 2100 (table 5)
due to decreased precipitation and increased temperature.
Low pulse counts increased by 11.6% for 2050 and 24% for
2100, while low pulse duration decreased by 8% in both fu‐
ture scenarios. For 2100, flood duration decreased by 34.2%
and frequency decreased by 14.8%. These are considerably
larger changes than for 2050, in which flood duration de‐
creased by 4.3% and frequency remained constant. If floods
were subdivided into large floods (peaks > 600 m3 s‐1) and
small floods (peaks > 350 m3 s‐1), then the difference became
more pronounced for 2100. The number of large floods
dropped 50% from the baseline scenario, and the number of
small floods increased by 12%. For 2050, the frequency of
small and large floods was close to the baseline and consisted
of one large flood every nine years and one small flood every
six years. In both future scenarios, the maximum flood peaks
increased relative to the baseline.

The increase of streamflow in the late spring and early
summer observed in both future climate scenarios, followed
by the significant decrease in streamflow in the late summer
and early fall (table 4), could have adverse effects on agricul‐
tural production. Although crops will have adequate precipi‐
tation in the early growing stages, water stress in the late
summer may lead to plant stress and increased irrigation de‐
mand. The 2100 scenario had similar precipitation but higher
temperatures than the 2050 scenario, resulting in similar low

Table 5. Hydrologic indices of the baseline and two future climate
scenarios (values in parentheses are percent differences from baseline).

Baseline
Value

2050
Scenario

2100
Scenario

Mean annual flow (m3 s‐1) 4.50 4.60 (1.3%) 3.80 (‐17.2%)
Low pulse count (year‐1) 6.00 6.70 (11.6%) 7.40 (24.0%)
Low pulse duration (days) 16.00 14.70 (‐8.0%) 14.70 (‐8.0%)
Flood peak (m3 s‐1) 777.40 861.70 (10.8%) 844.30 (8.6%)
Flood duration (days) 61.58 58.90 (‐4.3%) 40.53 (‐34.2%)
Flood frequency (year‐1) 0.27 0.27 (0.0%) 0.23 (‐14.8%)

pulse duration but greater low pulse count as well as a reduc‐
tion in flood duration and frequency.

CONCLUSIONS
Analysis of two future climate scenarios (2050 and 2100)

underscored the importance of evaluating possible monthly
or seasonal shifts in addition to annual evaluations, as annual
synoptic analysis can mask important changes to the hydro‐
logic budget. Assessment of the effects of climate change
must not be limited to the forcing functions (temperature,
precipitation,  and carbon dioxide) but must instead consider
important hydrologic response parameters, such as soil mois‐
ture, runoff, and streamflow. To the extent that watershed
planners make decisions based on hydrologic response pa‐
rameters, translating GCM results into the hydrologic param‐
eters that inform land‐management decisions is critical.
Further research is needed both in the analysis of hydrologic
impacts of climate change as well as the understanding of
which hydrologic parameters are used by landscape and wa‐
tershed managers in their land‐use decisions.

The severity of the increased drought and decreased flood
responses simulated in this study would not be anticipated by
review of precipitation trends alone nor by analysis of annual
hydrologic responses alone. Many of the critical hydrologic
responses reflected interactions of climate variables
(e.g.,�precipitation  and temperature) at sub‐annual temporal
scales. Thus, climatic interactions should be considered in
studies of climate change impacts on hydrology.

Compared to simply incorporating GCM data (as done in
some previous climate change impact studies), the WINDS
stochastic weather generator was able to better simulate the
presence of “internally generated” (i.e., convective) storms
by the use of probability distributions from historical data.
Although this improved method allowed simulation of future
climate shifts based on GCM‐simulated monthly shifts, it
could not simulate potential shifts in climate patterns within
a month, such as changes in transitional probabilities that
govern the intensity and distribution of storms with months.
Such analysis may be possible using regional climate models
to dynamically downscale GCMs. Regional climate models
capture feedbacks leading to disproportional increases in
storm intensity and timing, which are critical to hydrologic
forecasting. Translation of regional climate model responses
into WINDS stochastic parameter adjustments will allow
more accurate and efficient simulation of future local cli‐
mates for watershed analyses.

Results of this study also suggest that assessment of cli‐
mate variability may require more than 100 years of hydro‐
logic analyses. For example, assessment of the impact of
climate change on flood frequency requires long‐term hydro‐
logic analysis; a 100‐year flood analysis would require the re‐
sults of multiple 100‐year periods to provide accurate
representation.  This also suggests the importance of a sto‐
chastic weather generator, as used in this study, in develop‐
ment of future climate scenarios to capture various temporal
progressions of precipitation events that are consistent with
the established future precipitation probability distributions.
In addition, further research is needed to define how future
precipitation distributions differ from historical patterns.
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