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Abstract

Soil erosion and sedimentation are fundamental water quality and quantity concerns throughout
the United States. Agricultural fields are known to be a major contributor of sediment into
surface waters. The objectives of this study were to evaluate different methods of identifying the
agricultural fields with greatest soil erosion potential in Black Kettle Creek Watershed using
readily available landuse and soil inputs, and to demonstrate a method of field-scale targeting
using ArcSWAT. Black Kettle Creek watershed (8,000 ha) is a subwatershed in Little Arkansas
Watershed (360,000 ha) in south-central Kansas. An ArcGIS toolbar was developed to post-
process SWAT HRU output to generate sediment, nitrogen, and phosphorus yields for individual
fields. A RUSLE-based model was also developed using model builder in ArcGIS. Results are
presented that quantify the relative impact of each input and method type on selecting target
fields with the greatest pollutant yields. The fields ranked by SWAT in the top 10% by sediment
yields changed with soil data inputs used (STATSGO vs. SSURGO) by up to 37%, with landuse
inputs used (Field vs. NLCD vs. NASS) by up to 95%, and with model type (SWAT vs. RUSLE)
by 75%. As modeling results are used to target BMP implementation efforts, extreme care
should be used in selection of both model and input data.
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I ntroduction

Soil erosion and sedimentation are fundamentalveptality and quantity concerns throughout
the United States. Soil erosion from agriculturalds is known to be a major contributor of
sediment yields into surface waters.

The City of Wichita in south-central Kansas undekttheEquus Beds Aquifer Storage and
Recovery (ASR) Projeathich diverts water during high flows from the léttArkansas Watershed
through bank storage (diversion) wells. In 206@ré was approximately 1.3 millior®f850
million gallons) of water injected into theguus Beds aquifer. It was noted that on average, for
every 3,800 m(1 million gallons) of water injected, there wameoximately 6.4 Mg (7 tons) of
sediment that was removed from the treatment ta¢liteele, 2006). Removing sediment from
the water and then injecting water to Equus bedireg high treatment costs. Steele (2006)
conducted a water quality monitoring study and amhed that the Black Kettle Creek
subwatershed of Little Arkansas Watershed delivétedyreatest sediment yields compared to
other subwatersheds. Substantial funding from a AFBIRCS Conservation Innovation Grant
(CIG) will be used to address sediment yields fidlack Kettle Creek Watershed by supporting
implemention of targeted conservation practicesgncultural fields with greatest soil erosion
potential.

The objectives of this study were to evaluate d&fifie methods of identifying the agricultural
fields with greatest soil erosion potential in Bdd¢ettle Creek Watershed using readily
available landuse and soil inputs, and to demates&ranethod of field-scale targeting using
ArcSWAT.

Study Area

Black Kettle Creek Watershed

Black Kettle Creek Watershed is a 7,818 ha
(19,295 ac) subwatershed of Little Arkansas
River Watershed located within McPherson
and Harvey Counties in south-central
Kansas (Figure 1). Primary land use in the
watershed is cropland (84% of total area),
including wheat (65%), corn (8%), grain
sorghum (15%), soybeans (11%) and alfalfa
(1%). Rangeland comprises 12% of the total
land area and urban area occupies 2%,
followed by forests with 2%. The major
pollutant concerns in this watershed are
sediment and phosphorus.

Figure 1: Black Kettle Creek Watershed



Materials and M ethods

Soil and Water Assessment tool (SWAT) method ar8-EHsed RUSLE method (Renard, 1997)
were used to identify and target the specific Belith greatest soil erosion potential.

SWAT Methodology

Inputstothe SWAT model: Table 1 shows input data sources that were ustiSWAT
model to develop different scenarios.
Table 1: Input data sources for the SWAT model.

Topography Landuse Soils Slope Weather Data
*10m DEM *NLCD 2001 *SSURGO *0-2,2-4, *1995 to 2006
*NASS 2007 *STATSGO and 4 -9999 % | (12 year period)

field landuse

The field landuse was developed manually usinghd (Common Landuse Unit or FSA) field
boundary shapefile. Each field landcover was méyedited based on field by field survey
conducted in the watershed. The SSURGO soil lagerprepared using SSURGO processing
tool (Sheshukov et al, 2009) that converts the SSORlata to a format compatible with
ArcSWAT.

SWAT model setup: Six different SWAT scenarios were conducted by vayyanduse and soil
inputs during each SWAT run (Table 2). The DEMpsl@nd weather inputs were held the same
for each SWAT scenario. The thresholds for lancusislope were set to 0% so that all land
cover, soil and slope combinations (HRUS) in théenshed were represented. The model creates
a FullHRU feature class (shapefile) containing golys representing all the HRUs within the
watershed. Table 2 gives the different SWAT scesanames, number of subbasins and HRUs
that were generated during each scenario.

Table 2: Model scenarios, number of subasisns and HRUs

Scenario M odel Land UseData | Soil Data | No. Subbasns| No.HRUs
S/IFLD/SS SWAT Field Survey SSURGO 9 1169
SIFLD/ST SWAT Field Survey STATSGO 9 319
S/INAS/SS SWAT NASS SSURGO 9 1133
S/NAS/ST SWAT NASS STATSGO 9 344
S/INLC/SS SWAT NLCD SSURGO 9 800
SINLC/ST SWAT NLCD STATSGO 9 216
R/FLD/SS RUSLE Field Survey SSURGO N/A N/A
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Each SWAT scenario was simulated for the perio®1®2006 (15 years). The first three years
(1992 to 1994) were used for model initializatiah;analyses were conducted on the remaining
12 years (1995 to 2006). The HRU, Subbasin andReaiputs files were exported and written
as tables in the access database (SWATOutput.mdb).

SWAT post processing and Targeting: Identifying the fields that most produces sediment
yields involves the following steps after SWAT ryfsgure 2).

Calculate Average Annual sediment for HRUs
from SWATOutput tables
Join to FullHRU shapefile
Process the FullHRU shapefile

Convert FullHRU shapefile to Grid

Use Zonal Statistics to get pollutant yields for

each Field

Figure 2: Steps to get pollutant yields on field basis.

The above mentioned steps are time consuming &od ilatensive. Therefore, an ArcGIS based
SWAT targeting toolbar was developed using ArcGIS-Visual Basic to postpss the SWAT
output and prepare maps of sediment, total phosghand total nitrogen yields for a user-
defined land-area boundary. The toolbar is divigéd two menu items: SWAT Output
Processing and Targeting (Figure 3).

SWAT Output Processing: The SWAT Output Processing menu opens up the BbesddSWAT
Output Processing Tool. This tool reads the SWAT output tables that &weesl in access
database (SWATOutput.mdb) and exports average asadianent, total nitrogen and total
phosphorus yields for HRUs and subbasins.

Targeting: The Targeting menu opens up tvatershed Targeting Model that was build using
Model Builder in ArcGIS Environment. This tool needutputs from th&WAT Output

Processing Tool, FUllHRU shapefile (generated in SWAT model rum)l doundary of interest
(e.g., fields, subbasins, counties). Once the mpte satisfied, the tool produces maps of area-
weighted average annual pollutant yields (sedintetd| phosphorus and total nitrogen yields)
for the user defined boundary. In this study, théJ@ield boundary shapefile was used. Since
this project involves identifying most sedimentgwoing fields, we used only maps of fields
with sediment yields. Figure 3 summarizes the fiomst of the toolbar.
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r— FullHRU Shapefile SWAT Output
- & o <

Average Annual Sediment, TotalN,
TotalP for HRU and Subbasins

Boundary of Interest

-

Figure 3: Overview of SWAT Targeting Toolbar

Using these tools and procedures, area-weightedgea@nnual sediment yields for each field
for different SWAT runs was developed.

RUSL E Methodology

A user-friendly RUSLE model was developed basetherRUSLE equation (Renard, 1997)
using Model Builder in ArcGIS Environment (Figurg Zhis particular model uses readily
downloadable data from the internet and producgssrofarea-weighted annual average
sediment yields for user-defined boundary in théevshed.

i

—
User defined
bou

Average Annual Zonal
Soil Erosion (T/ha) ™ o ibies

Figure 4: Overview of RUSLE Model.

RUSLE Model Setup: The model requires Digital Elevation Model (DEM)dyrDEM
resolution as number, landuse grid, SSURGO sdispgfiles), watershed boundary, boundary
of interest (e.g., CLU field boundary or subbasmudary), R factor as number, and P factor as
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number. The landuse lookup table and the soil Ipdkble needs to be prepared separately and
provided as input to the model. Once these inpetprovided to the model, the model produces
maps of area-weighted average annual sedimensyietdiser defined boundary of interest. In
this study, 10-m DEM, field landuse grid (prepaf@dSWAT model), SSURGO soils, R factor
of 185, and P factor of 1 were used.

Top 10 and 20 percent calculations: For each modeling scenario, field-scale sedimeidy
(Mg/ha) for each of 677 fields in the watershedewanked from high to low. We used four
subsets of this ranking for comparison: the top W%telds (68 fields), top 20% of fields (135
fields), fields with the top 10% of sediment yieldsd fields with the top 20% of sediment
yields. The number of fields that constituted e 10% or 20% of sediment yields is varied by
scenario. These methods were referred to as the@8p of fields”, “20% of fields”, “10% of
yields”, and 20% of yields”.

Analysis: The individual fields identified as in the top pentages of fields and top percentages
of yields were compared among modeling scenaribe.S/FLD/SS scenario (Table 2) was
considered to be the baseline scenario becauseathadeveloped field landuse and SSURGO
soils were considered to be the inputs that b@sesented actual conditions of the watershed.
Comparisons were conducted by spatially overlappach modeling scenario to the baseline
scenario using GIS. The SWAT baseline scenariol(3/&S) was also compared to the RUSLE
method (R/FLD/SS) to evaluate different methods/et®br targeting recommendations.

Results and Discussions

Output maps of the top 10 and 20% ranked by fiatdsyields were prepared for all modeling
scenarios. Examples are shown (Figure 5) for mapgpa20% by fields and by yields for
S/FLD/SS and R/FLD/SS scenarios. The number aldigbercent of total area, and spatial
location of fields in the watershed varied betwseenarios and methods (by field vs. by yield).

Field— S/FLD/SS Field— R/FLD/SS  Yield—S/FLD/SS  Yield— R/FLD/SSv\,"/\A

Figure5: Top 20% based on fields and sediment yields for B/BS and R/FLD/SS scenarios



The number of targeted fields based on top 10%etdfS was 68 and top 20% fields was 135
(Table 2). The number of targeted fields basedpnl0% of sediment yields ranged from 8 to
49 and to 20% of yields ranged from 22 to 81. Teeent of total area that needs targeting

based on top 10 and 20% fields ranged from 6.316% and 15.5 to 24.6%. The percent of total

area that needs targeting based on top 10 and @@ent yields ranged from 1.9 to 4.4% and

4.6 to 10.7% (Table 2)

Table 2. Percent area and number of fields based on fredldsadiment yield methods

Top 10% based on Fields Top 10% based on Yields
Scenario Percent of total area No of fields Scenario Percent of total area No of fields
R/FLD/SS 7.20% 68 R/FLD/SS 1.90% 20
S/FLD/SS 12.50% 68 S/FLD/SS 2.30% 20
S/FLD/ST 12.80% 68 S/FLD/ST 2% 19
S/NAS/SS 13.33% 68 S/NAS/SS 2.10% 8
S/NAS/ST 13.50% 68 S/INAS/ST 2% 9
S/NLC/SS 6.50% 68 S/NLC/SS 4.40% 49
S/NLC/ST 6.50% 68 S/NLC/ST 3.70% 48

Top 20% based on Yields Top 20% based on Yields
Scenario Percent of total area No of fields Scenario Percent of total area No of fields
R/FLD/SS 16.90% 135 R/FLD/SS 5 45
S/FLD/SS 24.60% 135 S/FLD/SS 5.1 35
S/FLD/ST 23.70% 135 S/FLD/ST 4.6 33
S/NAS/SS 25.10% 135 S/NAS/SS 5.4 23
S/NAS/ST 23.9 135 S/INAS/ST 5 22
S/NLC/SS 18 135 S/NLC/SS 10.7 86
S/NLC/ST 15.5 135 S/NLC/ST 8.5 81

The importance of SSURGO and STATSGO soil dataeiretbping targeting recommendations
was evaluated by spatially overlapping fields teeddy the S/FLD/SS scenario compared with
S/FLD/ST scenario, SINAS/SS with S/INAS/ST, and SIN&S with S/NLC/ST for each field

ranking method (top 10 and 20%, by fields and l®jdg). The results (Table 3) showed that use

of SSURGO vs. STATSGO soil datasets changed a mgfahiportion of the targeted fields in
each case. The agreement in specific fields seleimg the two soil databases ranged from 75
to 82% when the top 10% of fields were targetedfemm 63 to 95% when the top 10% of

sediment yields were targeted (Table 3). Thesdtseisulicate differences (up to 37%

difference) in which fields were targeted dependngvhich soil database was used.

Table 3: Scenario comparisons to evaluate SSURGO (SS) 8ATSGO (ST) soils.

Top 10% based on fields Top 10% based on Yields
Scenario No of fields | Percentage overlap Scenario No of fields | Percentage overlap
SIFLD/SS : 67 82% SIFLD/SS 20 95%
Overlap of S/FLD/SS with S/IFLD/ST 55 Overlap of S/IFLDA8ith S/FLD/ST 19
SINAS/SS 67 SINAS/SS 8
- 81% 63%
Overlap of SINAS/SS with SINAS/ST 54 Overlap of SINASI@EH S/INAS/ST 5
SINLC/SS 67 75% SINLC/SS 49 67%
Overlap of SINLC/SS with SINLC/ST 50 Overlap of SINLCASih S/INLC/ST 33
Top 20% based on Fields Top 20% based on Yields
Scenario No of fields | Percentage overlap Scenario No of fields | Percentage overlap
SIFLD/SS 135 86% SIFLD/SS 35 71%
Overlap of S/IFLD/SS with S/IFLD/ST 116 Overlap of S/IFLD8iSh S/FLD/ST 25
SINAS/SS 135 85% SINAS/SS 23 78%
Overlap of SINAS/SS with SINAS/ST 115 Overlap of SINASIE®H S/INAS/ST 18
SINLC/SS 135 78% SINLC/SS 86 74%
Overlap of SINLC/SS with SINLC/ST 105 Overlap of SINLCA8iEh SINLC/ST 64




We also evaluated the difference caused by soldlemduse data and by model type (SWAT vs.
RUSLE) methods in developing targeting recommendatiEach scenario was spatially
overlapped with S/FLD/SS scenario (base scenasrdpp 10 and 20% fields and yields. The
results (Table 4) showed that the other SWAT seesagreement in overlap ranging from 5%
to 95% among methods. The percentage agreemerttiglees for S/FLD/SS and R/FLD/SS
scenarios when compared to other SWAT scenaricspefar the S/FLD/SS.

Table 4: Scenario comparisons to evaluate landuse, saitsrgmd modeling methods.

Top 10% based on Fields Top 10% based on Yields
Scenario No of fields Percentage overlap Scenario No of fields | Percentage overlap
S/FLD/SS _ 67 82% S/FLD/SS _ 20 95%
Overlap of S/IFLD/SS with S/FLD/ST 55 Overlap of S/IFLD/SS with S/IFLD/ST 19
S/FLD/SS 67 20% S/FLD/SS 20 59%
Overlap of S/FLD/SS with S/INAS/SS 27 Overlap of S/FLD/SS with S/INAS/SS 1
S/FLD/SS 67 39% S/FLD/SS 20 10%
Overlap of S/FLD/SS with S/INAS/ST 26 Overlap of S/FLD/SS with S/INAS/ST 2
S/FLD/SS 67 2506 S/FLD/SS 20 60%
Overlap of S/FLD/SS with S/INCL/SS 17 Overlap of S/FLD/SS with S/INCL/SS 12
S/FLD/SS 67 24% S/FLD/SS 20 2506
Overlap of S/FLD/SS with S/INCL/ST 16 Overlap of S/FLD/SS with S/INCL/ST 5
S/FLD/SS 67 429% S/FLD/SS 20 2506
Overlap of S/IFLD/SS with R/FLD/SS 28 Overlap of S/FLD/SS with R/FLD/SS 5
Top 20% based on Fields Top 20% based on Yields
Scenario No of fields Percentage overlap Scenario No of fields | Percentage overlap

S/FLD/SS 135 S/FLD/SS 35

- 86% - 71%
Overlap of S/IFLD/SS with S/FLD/ST 116 Overlap of S/IFLD/SS with S/FLD/ST 25
S/FLD/SS 135 61% S/FLD/SS 35 14%
Overlap of S/FLD/SS with S/INAS/SS 82 Overlap of S/FLD/SS with S/INAS/SS 5
S/FLD/SS 135 58% S/FLD/SS 35 14%
Overlap of S/FLD/SS with S/INAS/ST 78 Overlap of S/FLD/SS with S/INAS/ST 5
S/FLD/SS 135 49% S/FLD/SS 35 29%
Overlap of S/FLD/SS with S/INCL/SS 66 Overlap of S/FLD/SS with S/INCL/SS 17
S/FLD/SS 135 43% S/FLD/SS 35 43%
Overlap of S/FLD/SS with S/INCL/ST 58 Overlap of S/FLD/SS with S/INCL/ST 15
S/FLD/SS 135 60% S/FLD/SS 35 51%
Overlap of S/FLD/SS with R/FLD/SS 81 Overlap of S/FLD/SS with R/FLD/SS 18
Conclusions

Agricultural fields with greatest soil erosion pati@l were identified and targeted using
ArcSWAT. Different sources of landuse and soil ingata were also evaluated. An ArcGIS
toolbar was developed to aggregate SWAT HRU outgdield and prepare maps of high
priority fields by sediment, total nitrogen, andiadlgphosphorus yields. The fields ranked by
SWAT in the top 10% by sediment yields changed waih data inputs used (STATSGO vs.
SSURGO) by up to 37%, with landuse inputs useddris. NLCD vs. NASS) by up to 95%,
and with model type (SWAT vs. RUSLE) by 75%.Extrecaee should be used in selection of
both model and input data since modeling resuéisuaed to target BMP implementation efforts.
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